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Scalable diagnostic screening of 
mild cognitive impairment using AI 
dialogue agent
Fengyi Tang1,2, Ikechukwu Uchendu1, Fei Wang3, Hiroko H. Dodge4 & Jiayu Zhou1*

The search for early biomarkers of mild cognitive impairment (MCI) has been central to the Alzheimer’s 
Disease (AD) and dementia research community in recent years. To identify MCI status at the earliest 
possible point, recent studies have shown that linguistic markers such as word choice, utterance and 
sentence structures can potentially serve as preclinical behavioral markers. Here we present an adaptive 
dialogue algorithm (an AI-enabled dialogue agent) to identify sequences of questions (a dialogue 
policy) that distinguish MCI from normal (NL) cognitive status. Our AI agent adapts its questioning 
strategy based on the user’s previous responses to reach an individualized conversational strategy per 
user. Because the AI agent is adaptive and scales favorably with additional data, our method provides 
a potential avenue for large-scale preclinical screening of neurocognitive decline as a new digital 
biomarker, as well as longitudinal tracking of aging patterns in the outpatient setting.

The search for early biomarkers of mild cognitive impairment (MCI) has been central to Alzheimer’s Disease 
(AD) and dementia research community in recent years. While there exists in-vivo biomarkers (e.g., beta amyloid 
and tau) that can serve as indicators of pathological progression toward AD, biomarker screenings are prohibi-
tively expensive to scale if widely used among pre-symptomatic individuals in the outpatient setting1. Classically, 
the structural magnetic resonance imaging (MRI) modality has been shown to capture a set of physiologic mark-
ers in the AD pathological process2,3. However, the identification of MCI from normal aging (NL) is challenging 
with MRI due to the fact that structural changes in the brain at this phase are minor and hard to detect4. Although 
recent studies5–7 have shown that inferring structural connections among brain regions may provide promising 
results of MCI detection, they generally involve identifying structural changes that proceed from the point where 
clinical changes (i.e., physiologic changes from cognitive decline) have already occurred.

To identify MCI status at the earliest possible point, the feasibility of obtaining preclinical markers (i.e., before 
the onset of detectable physiologic changes) needs to be investigated. We note that in this study, we use the term 
“preclinical” to identify those who are likely to receive clinical diagnosis of Alzheimer’s Disease in the future, not 
necessarily based on the amyloid deposition, pathological tau, and neurodegeneration (ATN) biomarker-based 
framework presented in Jack et al.8 Specifically, we are interested in identifying those who are currently clinically 
normal but are on the trajectory to develop MCI in the near future. However, the identification of such develop-
mental trajectories requires that we first identify a set of invariant markers that can distinguish MCI patients from 
normal aging crosssectionally.

Ideally, such markers should be inexpensive to obtain and scalable to applications outside of the clinical set-
ting. Fortunately, recent studies have shown that simple linguistic markers such as word choice, phrasing (i.e., 
“utterance”) and short speech patterns possess predictive power in assessing MCI status in the elderly popula-
tion9. Note that this is quite different from “speech markers” that involve auditory changes in pronunciations10–12 
which reflect early symptomatic changes in speech generation. Behavior and social markers such as language, 
speech and conversational behaviors reflect cognitive changes that may precede physiological changes and offer 
a much more cost-effective option for preclinical MCI detection13,14, especially if they can be extracted from 
a non-clinical setting. However, extensive semi-structured conversation on the scale of several hours may be 
required to obtain reliable linguistic markers of MCI, as shown in the previous study9. In the current study, we are 
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interested in not only identifying linguistic markers which distinguish MCI from those with normal cognition, 
but also in proposing methods that can compose new sets of questions capable of identifying MCI with only a few 
conversational turns with the participants.

We develop a prototype AI dialogue agent that conducts screening conversations with participants. 
Specifically, this AI agent must learn to ask the specific sequence of questions that are more likely to elicit 
responses containing linguistic markers that distinguish MCI form normal (NL) aging. We propose a reinforce-
ment learning (RL)15 pipeline, along with a dialogue simulation environment15–17, to provide a training ground 
for the AI agent to explore over a range of semi-structured questions. The dialogue agent arrives at an optimal 
dialogue strategy – we call it a “policy”– for conducting adaptive conversations with users.

The proposed framework thus provides a potentially cost-effective and scalable way of screening the aging 
population for MCI-risk in an individualized manner. Our statistical learning approach leverages a principled 
way of minimizing generalization error18 which allows the agent to handle a diverse set of user conversational 
styles. Additionally, unlike classical supervised learning18, we incorporate a feedback loop between the RL and 
dialogue simulation module to allow rapid adaptation to unseen users without prior knowledge of their dialogue 
tendencies. In experiments, we demonstrate proof-of-concept results using cross-sectional data from a completed 
behavioral intervention trial. Results demonstrate that such an approach provides a potential avenue for longitu-
dinal tracking of aging patterns through strategic and data-driven dialogue.

Methods
Study design and participants.  We train and validate our AI dialogue agent based on transcribed data 
from a randomized controlled behavioral intervention NIH funded study (R01AG033581, ClinicalTrials.gov: 
NCT01571427) which was completed in 201419. Briefly social isolation or lack of social interactions were found 
to be risk factors of dementia in epidemiological studies20–22. Therefore, this behavioral randomized controlled 
intervention trial aimed to examine whether increasing social interactions through video-chat conversations 
improve cognitive functions. User-friendly video-chat devices were created specifically for this project in order 
to reduce the effect derived from the stimulation of learning how to operate the device. The experimental group 
engaged in video-chat conversations with trained conversational staff for 30 minutes, 5 times per week for 6 
weeks. Control group received only weekly 10 minutes phone check-in to monitor their social engagement activ-
ities and improve their retention. Participants were assessed by a full battery of neuropsychological tests used 
in all National Institute of Health (NIH)-funded Alzheimer’s Disease Centers in the United States (National 
Alzheimer’s Coordinating Center Uniform Data Set Version 2) at baseline and received clinical diagnosis by 
clinicians. To be eligible, the participants have to be at least 70 years old and free from frank dementia (mean 
age 80.43, 71% women, average years of education 15.7). Out of 83 subjects who completed the trial, we use the 
transcribed data from 41 subjects (14 MCI, 27 NL) in the current study who consented to have conversations 
transcribed and shared among researchers. There were no significant differences in age, gender, education and 
marital status between the group who consented to use their recorded conversation for this research study com-
pared to those who did not. A subset of the total conversations (2.81 conversational episodes per participant) were 
transcribed and used for the current study. Basic characteristics of participants, inclusion and exclusion criteria are 
summarized in Supplementary Table 1.

Conversation structure and preprocessing.  The conversational transcripts were first processed into 
utterances, which are unstructured responses to questions provided by interviewers. The interview questions were 
generated from a pool of over 150 possible questions which are organized into the following categories: trans-
portation, childhood, cities, entertainment, family, personal preferences, gifts and celebrations, health problems, past 
jobs, spouse, social opinions, politics, comment about photographic images, and significant relationships. During the 
interviews, the interviewer was allowed to adapt the specific wordings of questions to the participant. However, 
these behaviors are not accounted for in the current version of the AI conversation agent.

For the purposes of this study, we re-compiled the question list into 107 general questions which were ubiq-
uitous across all conversations. For some of the questions, we delexicalised certain topic words such as “<activ-
ity > ”, “<social topic > ”, whereby specific nouns are replaced by contextual descriptors23. This is done to reduce 
the size of the question pool without sacrificing their contextual meaning. For participant responses, we did not 
remove “stopwords” (i.e. “uhh”, “hmm”), as their usage frequencies reflect some lexical properties of the user. A 
sample of the categorical interview questions is shown in Supplementary Table 2.

Pretraining and fine-tuning skip-thought embeddings.  The benefit of using language models such 
as word- and sentence-level embeddings is that these representations can be learned using datasets outside of 
our task. The rationale is that sentence representations have some invariant properties – so called latent features 
– that can be observed and learned from compositions of multiple types (texts, dialogues, speech, pose etc)24. We 
utilize a pretraining + fine-tuning framework25 whereby we initialize the language models used in our dialogue 
simulators with Skip-thought models pretrained on other corpuses. Specifically, we used pretrained encoder and 
decoder from Kiros et al.26, which is conditioned on over 74 million sentences from the Bookcorpus dataset. We 
then fine-tune the decoder based on dialogue responses from our data.

MCI screening as a markov decision process.  Reinforcement learning is a field within artificial intelli-
gence (AI) research that aims to model strategic planning problems as Markov Decision Processes (MDPs)15,27. In 
this work, we model the trajectory of conversations in our dialogue problem as a MDP. Under such a framework, 
finding an optimal conversational policy involves decomposing the problem into a sequence of decisions, 
whereby the goal is to obtain the best action (i.e. question to ask) at each decision step based on the current infor-
mation state (i.e. conversational state)15,27. We define the MDP for our problem γR{ , , , , }S A T  as follows:
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•	 State space  : a finite space of high-dimensional vectors representing the status of the conversation. This 
high-dimensional vector spaces captures sentence-level properties of responses from participants. In the orig-
inal Asgari et al. work, “conversational states” are captured by summing LIWC word vectors for user 
responses9. Here, we encode conversational responses by training a sentence-level neural network that pro-
jects word embeddings to 4800-dimensional Skip-Thought vectors26. More details can about Skip-Thought 
(SKP) vectors can be found in Kiros et al.26. The benefit of SKP vectors is that they capture sentence-level fea-
tures such as semantics, grammatical structure and various word choices. In our case, we use a Skip-Thought 
encoder to project user responses, which consist of sequences of words, into a fixed length vector of 4800 
dimensions. As the conversation progresses, we use the transitional operator  , described below, to encode 
the SKP vectors …o o, , t1  of the user up to time t. The latent state of the transitional model represents the 
current conversational state, st.

•	 Action space : a set of discrete actions available at each state st at time t. In our case, the action space is com-
prised of the pool of 107 categorical questions. At different stages of conversation, we designed censors over 
the available actions (i.e. no personal questions before introductions are made) to inject common knowledge 
about human conversations into agent’s decisions. We denote at as the question output of the AI agent at time 
t, in response to the current conversational state st.

•	 Transition operator  : an approximate description of the dynamics of conversations27. For our problem,   is 
a function which generates a response, i.e. a probability distribution over the next conversational state +st 1, 
based on the current state st and action at and is learned directly from available data. We note here that the 
“conversational state” st at time t is different from the SKP observation of the user response at time t, which we 
denote ot. Specifically, st contains information from previous conversational turns while ot is only the 
encoded user response at time t. st satisfies the property p s s s p s s( , , ) ( )t t t t1 1… = −  (Markovian property) 
while the SKP observations do not.

•	 Formally, we design a recurrent neural network f o o a( , , , )t t1 …  to model the transition between st to +st 1, 
given the question at:
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T
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Here, the neural network Θf o a( ; ; )t t1:  takes in SKP observations …o o, , t1  and outputs the next SKP 
vector response +ot 1. We denote { }W , W , , W , boz os y yΘ = …  as the set of weights parameterizing the 
recurrent neural network model. Initially, o0 is the “greetings” state of the conversation, which is set to the 
SKP vector corresponding to a default greeting response (i.e., “hi”). As the conversation progresses, we 
update the Update, Reset, State, and Transition gates of f based on the observed SKP responses o o, , t1 …  and 
agent questions. Thus, we denote the repeated application of f  as dialogue simulation since the recurrent 
process of applying f f f, , , t2 …  generates a “trajectory” of conversational responses based on the agent 
questions …a a, , t1 . We train Θf o a( , ; )t t1:  based on the original dialogue data using the loss function:
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ot 1+ˆ  denotes the true SKP vector observed at time t 1+  in the dialogue. This loss function trains the parameters 
Θ of the transition model f  by minimizing the distance between the predicted SKP vectors ( =+o f o a( ( , )t t t1 1:  
and the actual SKP vector from the conversational data +ô( )t 1  across time, i.e., T1, ,… . The λΘ2 term is a regular-
ization mechanism used to prevent overfitting on the training data when building the transition module during 
dialogue simulation. It is important to note that the transition rules differ among participants, each capturing 
different personal and topic preferences that cannot be captured by the sentence-level encoding of responses 
alone. These issues are addressed in the Dialogue Simulation section below.
•	 Reward function R: a set of rules which assigns a scalar value to each question based on response of the 

participant. In our MDP, we designed a per-turn penalty to limit the agent from conducting extensively long 
conversations. At the end of the conversation, we enforce a largely positive or largely negative reward, based 
on the prediction accuracy to ensure that the agent is asking questions which extract the relevant features 
pertaining to MCI status. More formally, we design the reward function as follows:
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Here, τ denotes a confidence threshold, which is defined as the probability of either the NL or MCI class 
having 0.65 or higher probability under the MCI classifier. The idea is to penalize the AI agent for each 
non-terminal conversational turn (i.e., questions that keep the conversation going), especially for questions 
that are asked while the AI agent is already “confident” in its prediction of the MCI status. This mechanism 
enforces the AI agent to be “efficient”, which is to end the conversation when it is confident in the data it 
has collected up to time t. This efficiency mechanism is counterbalanced by a cumulative reward based on 
accuracy: a large positive reward for producing sequences of questions leading to the correct MCI 
prediction, and a large negative reward for questions leading to incorrect predictions.
We note here that for the terminal state reward signals, the reward function uses the MCI classifier, which 
utilizes ∑ = ot

T
t1  as input (rather than st) to predict the MCI label at the end of the episode. This subtle 

difference distinguishes the fact that st is used by the RL system for state-tracking but the MCI classifier 
uses a separate set of features o( )t

T
t1∑ =  to generate the reward signal.

•	 Discount factor γ: Since conversations can potentially “last forever”, a discount factor which serves to limit the 
contribution of future expected rewards; the damping of future signals serves to balance the tradeoff between 
asking enough questions to arrive at a confident MCI prediction and limiting the questions required to get 
there.

Dialogue simulation.  In the real-world setting, human users will have differences in conversational pref-
erence which may or may not be relevant to the underlying MCI status. The AI agent should thus be able to 
produce individualized sets of questions which can distinguish users with speech characteristics consistent with 
MCI compared to the NL control. For example, MCI participants use relational, filler and sentiment words with 
different frequencies compared to NL9, a pattern that can only be distilled from sequential dialogue turns with a 
given person.

We model individual differences in word choice as variance in transitional operators (i.e. ∈i  ) from our 
MDP. This was done by incrementally learning individualized transition operators … ∈T T, , N1  , transferring a 
small subset of shared parameters from previous models … −T T, , N1 1 to initialize the learning of new ones TN .

It should be noted that the AI agent does not have knowledge of the actual user transition dynamics as the 
dialogue simulators are part of the RL environment. Thus, in order to obtain states, the agent estimates the transi-
tion operators   by fitting the recurrent model on the observed SKP vectors using the loss function from Eq. 1. 
At each conversational turn, the agent only receives reward signals R s a( , )t t  and observation of the response (ot) 
from the environment and adapts its internal model and policy network accordingly. Thus, for unseen participant 
in our dataset, the AI agent does not have prior knowledge of the linguistic tendencies of these participants when 
initiating the conversation. At test time, we only use the dialogue simulators to produce responses to the agent 
questions to compare to actual responses from the original dataset.

Learning individualized conversational strategy with reinforcement learning.  In reinforcement 
learning, there are several ways to train the agent to learn an optimal policy ⁎π  which solves the proposed MDP. 
A policy π can be thought of as a strategy function which assigns a decision a t( ) ∈  to each state ∈st  at each 
time-step t15. While following a policy π, a value function Qπ can be formulated to reflect the expected cumulative 
rewards for the agent while strictly adhering to the given strategy15. An optimal policy ⁎π  can thus be described as 
a strategy which traverses the state-action trajectories in a way that maximizes the expected cumulative rewards15. 
To solve for the optimal policy, we use Deep Q-learning (DQN), a method which leverages properties of the 
Q-function to approximate a policy with provides the highest expected cumulative reward28. The advantage of this 
method is that a neural network is used to automatically learn the set of salient linguistic features from conversa-
tional responses which contribute to the accumulation of rewards and penalties, which in our case relate to the 
agent’s confidence over the MCI prediction accuracy, given the current conversational states, as well as the effi-
ciency of conversational turns. An overview description of our entire dialogue system can be found in Fig. 1.

Experimental setup and statistical analysis.  To evaluate the conversational strategies discovered by the 
AI agent against the original dialogue conversations, we directly assess the area under receiver operating curve 
(AUC), sensitivity and specificity of MCI predictions based on the conversations generated by the AI agent and 
those generated by the interviewers from the original manuscript. We split the dataset into 65% training and 
35% testing, and we perform 10 randomized shuffle splits and document the confidence interval (CI) across all 
generated test sets.

Due to the limited nature of the existing dialogue data, which cannot reflect responses of participants to 
novel sequence of questions, we used the dialogue simulators to sample approximate individualized responses 
to questions posed by the AI agent. Individualized conversation simulators are widely used in the field of natural 
language processing to evaluate the effectiveness of goal-oriented dialogue systems17. We account for the discrep-
ancy between responses generated from dialogue simulation and real responses by off-policy evaluation in the 
proceeding sections.

In total, we deployed 41 dialogue simulators, corresponding to each participant in the dataset. During both the 
training and testing phases of reinforcement learning, the AI agent does not have access to the internal model of 
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dialogue simulators. Instead, the simulator takes in questions from the AI agent and produces a simulated 
response (i.e. sentences) which the AI agent uses to decide its actions. At testing phase, we use these simulators to 
estimate responses to the AI strategies π( ) for each participant. The responses to the human expert conversational 
questions π( )expert  are simply the observed responses from the transcribed dialogue.

Results
Skip-thought representations of user responses are more predictive of MCI status.  We first con-
duct MCI predictions based on the original set of transcribed conversational data from Oregon & Health Sciences 
University (OHSU)19. Details of the data can be found in Materials and Methods section below. Figure 2 illustrates 
the two main statistical learning approaches compared in this study.

Here, the classical ML approach presented in Asgari et al.9 for identifying MCI linguistic markers is denoted 
by the supervised learning pipeline. Under the supervised learning setting, all the conversational responses by a 
subject is compiled into a corpus of words. Responses are then converted into word vectors, where each dimen-
sion of the word vector is a {0,1} indicator of a distinguishable feature based on its grammatical usage, semantic 
meaning and various contextual identifiers. The specifics of the word vector dimensions are manually deter-
mined by linguists who produced the Linguistic Inquiry and Word Count (LIWC) mappings for more than 15,000 
English words commonly used in NLP studies29–31. ML classifiers such as support vector machines (SVM) and 
feed-forward neural networks (MLP)18 are then applied on the word vectors to predict the {0,1} label of the MCI 
status. For the SVM classifier, we used the same settings as in Asgari et al.9 which showed that the SVM classifier 
with L1-regularization obtained the highest AUC, sensitivity and specificity for MCI prediction using the LIWC 
features. When using LIWC features (69 in total), we confirm that this is the case. Table 1 shows that our SVM 
implementation was able to achieve 0.712 AUC with confidence interval (CI) of (0.615–0.811) on 5 different ran-
domized shuffle splits. Our SVM results are close to the reported 0.725 AUC in the original Asgari et al. paper9. 
We also see from Table 1 that a shallow neural network (MLP model with 2 layers, 512 units each) performed 
poorly using the LIWC features, with AUC of 0.689 (0.560–0.818). This is consistent with the fact that deep mod-
els are prone to overfitting, especially with small sample sizes and simple feature representations.

By contrast, the inverse trend is observed when deep representations (Skip-thought vectors, denoted SKP) are 
used to represent the linguistic data. SKP representations differ from LIWC in that they are pretrained from other 

Figure 1.  Feedback loop of the reinforcement learning environment for training the MCI diagnosis agent. The 
user simulator trained from the original dialogue corpus is used to generate simulated user response to new 
questions from the MCI diagnosis agent (i.e., the Reinforcement Learning Agent). At each conversational turn, 
the “user state” of the simulated patient is updated based on the questions asked by the MCI diagnosis agent. We 
designed a Dialogue Manager which produces a reward signal to the MCI diagnosis agent based on the quality 
of questions asked.

Figure 2.  Overview of proposed algorithm for conversational generation and linguistic marker identification 
using a RL pipeline. Supervised learning pipeline denotes the classical approach by Asgari et al.9. Our approach 
is summarized in the RL pipeline and involves a feedback loop with the MCI diagnosis agent generating 
questions to new users for the purposes of predicting their MCI status using a trained ML classifier.
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datasets prior to the construction of our user simulators (see Methodology for details). Under the SKP setting, 
conversational responses are projected into 4800-dimensional Skip-Thought vectors26 that capture sentence-level 
features such as semantics, grammatical structure and various word choices. A MCI classifiers are then trained 
to map Skip-Thought vector responses to the MCI labels by minimizing the binary cross-entropy loss between 
samples18,26. We see from Table 1 that the MLP model achieves an AUC value of 0.811 with CI of (0.715–0.907), 
which is comparable to the SVM classifier 0.797 (0.719–0.879). Thus, we show here that a neural network MCI 
predictor can produce slight improvements over SVM without drastically overfitting to the training data, despite 
higher model complexity32. This can be explained by the fact that SKP representations capture more complex, 
sentence-level features33, leading to a more expressive feature representation compared to the LIWC9, which only 
captures word-level features.

AI-generated dialogues produce more predictive linguistic markers.  The bottom part of Fig. 2, 
labeled Reinforcement Learning (RL) Pipeline, summarizes our approach, which consists of training an AI agent 
(i.e., MCI Diagnosis Agent) to generate questions with the user in a feedback loop in order to obtain the linguistic 
markers. Details of this approach will be outlined in the Materials and Methods section below. Table 1 further 
shows various AUC, sensitivity and specificity scores of conversations produced by the AI agent when given con-
straints on the length of conversations. For example, RL(T = 35) means that the AI agent was given a maximum 
of 35 turns to complete the conversation with the simulated participant. This is because we noted that the aver-
age conversation in the original corpus lasted 35 turns. However, the dialogue corpus contained on average 2.8 
30-minute conversations per participant, conducted within 6 weeks. The average number of total dialogue turns 
per person for supervised learning (i.e. SVM and supervised DL) is 107.5, which is more than 3 times the number 
of dialogue data needed by the AI-agent to produce comparable results.

The last line of Table 1 shows the difference in AUC, sensitivity and specificity scores per train-test split 
between RL(T = 20) and the Supervised DL model. The RL(T = 20) agent generated 20 sequential questions and 
received 20 responses from the dialogue simulator for each test-set participant, which the AI agent has no prior 
conversational training data. The 20 responses are used by the 2-layer neural network to predict the MCI-status 
(0 = NL, 1 = MCI) for a given participant. In contrast, the Supervised DL model uses all the available dialogue 
responses for a given user to predict his or her MCI-status. We can see that the CI for their difference in AUC 
(−0.049–0.172), F1-score (−0.078–0.259), sensitivity (−0.083–0.410), and specificity (−0.130–0.050) all include 
0.0. Beyond 20 turns, we see that the RL policy is able to achieve increasing performance in AUC scores. We 
quantify the impact of additional conversational turns in the proceeding sections.

The AI policy adaptively finds the high-yield questions for unseen users.  To further investigate the 
efficiency of our dialogue agent, we compared the rate of increase in the predictive power of linguistic markers as 
a function of AUC-gain per added conversational turn. In Fig. 3, we observe from the slope of the AUC-gain that 
the rate is fastest at the beginning, suggesting that the MCI diagnosis agent identifies and prioritizes the most rel-
evant questions to assess MCI status early in the conversation. Perhaps most noteworthy is that at evaluation time, 
the MCI diagnosis agent has never seen the new subject and has to adapt its conversational strategy on-the-fly. 
As a result, we see that the AUC-gain curve is non-smooth: some prediction errors result from the fact that the 
new user behaves differently than the user simulation environment from which the diagnosis agent was trained 
in. However, the AUC-gain curves also demonstrate the capacity of the MCI diagnosis agent to self-correct its 
strategy in the face of measurement errors, in real-time, during new conversation.

Model AUC F1-Score Sensitivity Specificity

SVM w/ LIWC 0.712 (0.612–0.811) 0.631 (0.500–0.761) 0.680 (0.476–0.886) 0.744 (0.563–0.922)

Supervised DL w/ LIWC 0.689 (0.560–0.818) 0.182 (0.055–0.370) 0.300 (0.010–0.758) 0.767 (0.364–0.970)

SVM w/ SKP 0.797 (0.719–0.879) 0.719 (0.591–0.846) 0.654 (0.473–0.835) 0.939 (0.855–1.0)

Supervised DL w/ SKP 0.811 (0.715–0.907) 0.642 (0.469–0.813) 0.600 (0.366–0.833) 0.911 (0.838–0.984)

RL (T = 5) 0.633 (0.535–0.703) 0.486 (0.288–0.680) 0.459 (0.280–0.630) 0.811 (0.661–0.936)

RL (T = 10) 0.741 (0.631–0.852) 0.590 (0.352–0.829) 0.560 (0.309–0.811) 0.922 (0.823–0.969)

RL (T = 15) 0.721 (0.618–0.827) 0.595 (0.399–0.790) 0.50 (0.327–0.713) 0.922 (0.856–0.987)

RL (T = 20) 0.809 (0.706–0.914) 0.726 (0.551–0.901) 0.620 (0.413–0.827) 0.988 (0.953–1.0)

RL (T = 30) 0.853 (0.796–0.914) 0.801 (0.733–0.880) 0.818 (0.678–0.958) 0.898 (0.828–0.969)

RL(T = 35) 0.859 (0.787–0.952) 0.808 (0.735–0.883) 0.818 (0.677–0.958) 0.911 (0.839–1.0)

Difference 0.0616 (−0.049–0.172) 0.089 (−0.078–0.259) 0.163 (−0.083–0.410) −0.040 (−0.130–
0.050)

Table 1.  Classification of MCI based on complete transcript vs. simulated conversations. Abbreviations: 
Parentheses denotes confidence interval (CI) for the metric. SVM denotes support vector machines classifier, 
and Supervised DL denotes 2-layer feed-forward neural network classifier. RL denotes reinforcement learning 
agent. For feature representation of corpus, LIWC is the original word-level embedding used in Asgari et al., 8. 
SKP denotes a 4800-dimensional Skip-Thought vector embedding was used to represent each conversational 
turn. A dialogue summary is obtained by averaging across all turn-based responses for each user. We then 
evaluate the performance of our RL-agent across 10 stratified shuffle splits. Each split uses 65% of data for 
training and 35% for testing.
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Here, we define conversational efficiency as the number of dialogue turns required to achieve indistinguish-
able MCI-status prediction accuracy, as measured by overlapping confidence intervals of AUC, F1, sensitivity 
and specificity scores with expert interviewers πexpert. Figure 3 illustrates that the conversational efficiency of the 
AI agent is 20, which means that the AI agent requires only 20 conversational turns to produce users’ responses 
whose C.I. measures are consistent with πexpert using the original dataset.

Furthermore, Table 2 shows the magnitude of incremental prediction improvement at 5, 10, 20, 30 and 35 
turns between the prediction models. We bolded the rows in which the lower-bound on AUC confidence inter-
val of the AI agent exceeds the upper-bound of the SVM confidence interval, indicating statistically significant 
improvement for the corresponding turn-adjusted predictions. Specifically, the AI agent produced statistically 
significant improvements at 10, 20, and 30 turns when compared with supervised learning methods. Interestingly, 
the neural network is also able to offer some improvement in the mean AUC scores across various turn restric-
tions, compared to the SVM, but it does not do so in a statistically significant way compared to the AI agents.

Quality of simulated responses depend on sentence lengths.  In addition to quantitative metrics, 
we provide some concrete comparisons of dialogue simulations and the original dialogue corpus. Table 3 pro-
vides snapshots of 2 conversations, one with a verbose participant and one with a concise participant. In the left 
column, we see the original dialogue response to the questions posed by the interviewer. On the right column, we 
observe predicted response by the dialogue simulation based on maximum-likelihood estimation. It is notable 
that in short response (5–15 words), the dialogue simulation produces relatively stable responses both in terms 
of word choice as well as semantic meaning. On longer responses, as in the first user, we see that the dialogue 
simulator generates similar sentiment words as the original response, but the topical nouns and subject references 
may differ greatly.

Evaluating the accuracy of dialogue simulation has long been a difficult problem in natural language 
research17. A major problem resides in the fact that word-by-word comparisons such as perplexity or BLEU score 
does not adequately capture changes in grammatical structure, sentiment and semantics between sentences17. 
For this reason, our analysis has focused mainly on predictive ability of the AI policy as a result of reinforcement 
learning under imperfect dialogue simulation.

AI policy leads to questions with greater cumulative rewards during off-policy evaluation.  To 
account for potential bias in our dialogue simulators, we also compared the AI conversational strategies π⁎ against 

expertπ  directly over cumulative rewards on the original corpus conversations. Specifically, we deploy 
high-confidence off-policy evaluation (HCOPE)34 to weigh the reward difference between actions taken by the AI 

Figure 3.  Conversational efficiency of AI agents. The x-axis represents the number of dialogue turns elapsed. 
The y-axis represents various performance metrics. Baseline refers to the performance of MCI classifier using 
all the responses generated from the original dataset. By contrast, RL refers to the performance of MCI classifier 
using responses generated by the user simulator, in response to the agent-generated questions at test time.
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agent compared to the original actions in the corpus. In HCOPE, weighted importance sampling (WIS) is used to 
de-bias the rewards accumulated by the AI agent by bootstrapping the true policy values of the test set conversa-
tional trajectories34. In this setting, we evaluate both ⁎π  and expertπ  with the sample conversations from the original 
corpus at test time, scaling their episodic rewards by the WIS factor. Table 3 summarizes the per-turn reward and 
the per-conversation cumulative reward differences between the ⁎π  and πexpert. Here, we observe that ⁎π , as 
denoted by RL(T = 35) accumulates on average 408.29 (72.41–744.17) while expertπ  accumulates on average 91.71 
(−255.12–438.68) per conversation. Although the confidence intervals overlap, we see that both the cumulative 
advantage (250.78–354.58), and advantage per-turn (7.16–10.13) are non-zero in the C.I. interval, suggesting that 
π⁎ produces significantly higher reward per action than the πexpert.

We note here that the interviewers in the original clinical trial were not instructed to optimize for the effi-
ciency of conversation but rather to fill the entire 30 minutes of semi-structured conversation. However, we sim-
ply demonstrate here that a goal-oriented policy is possible – i.e., that reward signals and RL training regimes can 
be designed in a way that induce conversational strategies to survey the salient linguistic features using less time 
(as reflected in dialogue turns). By turning the original supervised learning problem into a reinforcement learning 
problem, we allow more efficient feature sensing strategies to be discovered.

Discussion
In this work, we introduce a data-driven method for developing an automated and scalable diagnostic screening 
tool for efficient detection of early MCI status based on linguistic data. Traditionally, diagnostic predictions in the 
medical domain are modeled as supervised learning problems, whereby diagnostic labels provided by physician 
experts are used to guide the modeling process. By formulating the MCI screening problem as a Markov Decision 
Process (MDP)15, we transform the learning task into an active sampling process by which the AI agent partici-
pates both in the data mining process (interacting with a virtual user) as well as the prediction process (assessing 
the MCI status). The resulting AI agent obtains not only the ability to make diagnostic predictions, but also learns 
an efficient data-generating strategy for detecting the disease of interest in a natural setting.

Model (Turns) AUC F1-Score Sensitivity Specificity

SVM (T = 5) 0.493 (0.439–0.547) 0.169 (0.061–0.275) 0.12 (0.046–0.193) 0.860 (0.776–0.950)

SVM (T = 10) 0.550 (0.479–0.620) 0.275 (0.113–0.428) 0.200 (0.083–0.319) 0.900 (0.820–0.970)

SVM (T = 20) 0.624 (0.563–0.685) 0.405 (0.232–0.578) 0.360 (0.171–0.548) 0.888 (0.789–0.989)

SVM (T = 30) 0.633 (0.557–0.707) 0.424 (0.247–0.601) 0.320 (0.187–0.458) 0.944 (0.882–1.0)

SVM (T = 35) 0.714 (0.627–0.801) 0.576 (0.420–0.732) 0.440 (0.277–0.602) 0.968 (0.944–1.0)

Supervised DL (T = 5) 0.497 (0.392–0.603) 0.104 (0.015–0.182) 0.111 (0.091–0.129) 0.880 (0.812–0.980)

Supervised DL (T = 10) 0.527 (0.459–0.594) 0.278 (0.123–0.433) 0.200 (0.088–0.316) 0.933 (0.856–1.0)

Supervised DL (T = 20) 0.673 (0.588–0.758) 0.399 (0.212–0.583) 0.320 (0.139–0.500) 0.945 (0.888 - (1.0)

Supervised DL (T = 30) 0.720 (0.643–0.796) 0.477 (0.317–0.638) 0.360 (0.228–0.491) 0.955 (0.914–0.996)

Supervised DL (T = 35) 0.780 (0.695–0.864) 0.490 (0.327–0.654) 0.366 (0.229–0.500) 0.966 (0.928–1.0)

RL (T = 5) 0.633 (0.535–0.703) 0.486 (0.288–0.680) 0.459 (0.280–0.630) 0.811 (0.661–0.936)

RL (T = 10) 0.741 (0.631–0.852) 0.590 (0.352–0.829) 0.560 (0.309–0.811) 0.922 (0.823–0.969)

RL (T = 20) 0.809 (0.706–0.914) 0.726 (0.551–0.901) 0.620 (0.413–0.827) 0.988 (0.953–1.0)

RL (T = 30) 0.853 (0.796–0.914) 0.801 (0.733–0.880) 0.818 (0.678–0.958) 0.898 (0.828–0.969)

RL(T = 35) 0.859 (0.787–0.952) 0.808 (0.735–0.883) 0.818 (0.677–0.958) 0.911 (0.839–1.0)

Table 2.  MCI prediction of transcript and simulated conversations with turn restrictions. Abbreviations: SVM 
denotes support vector machines classifier, Supervised DL denotes 2-layer feedforward neural network, and 
RL denotes reinforcement learning agent. In all three cases, conversations were cut off at various turn lengths 
(T), and performance with the classifier was performed to obtain the AUC, F1, sensitivity and specificity scores. 
Confidence intervals were obtained on 10 randomized shuffle splits for all experiments.

Policy Avg. Reward/Turn WIS Score DR estim./turn DR Score

RL (T = 35) 11.68 (2.06–21.35) 408.29 (72.41–744.17) 13.10 (12.91–13.35) 458.64 (452.40–464.87)

Expert Policy 2.62 (−7.28–12.51) 91.71 (−255.12 − 438.68) 10.82 (10.51–11.14) 379.07 (367.89–390.25)

Advantage 8.68 (7.16–10.13) 302.67 (250.78–354.58) — —

Table 3.  Comparison of AI and interviewer strategies using off-policy evaluation. Weighted Importance 
Sampling (WIS) indicates off-policy evaluation of a given policy while sampling trajectories from the original 
dataset corpus25. For the expert policy, no importance weights are needed, and the cumulative rewards are used 
over entire conversational episodes. For the AI agent, a cut-off of 35 turns is again used to bound the length of 
off-policy trajectories. Average reward per turn is used to assess the average expected reward for the agent based 
on the reward function used to train the RL agent.
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In our experiments, we introduce a method for comparing the efficiency of AI dialogue strategy against that 
of the human interviewers. Specifically, we defined conversational efficiency, which quantifies the efficiency of 
different intervention strategies (AI-simulated vs. observed) based on the AUC-gains resulting from the differ-
ent data provision strategies. Additionally, we also introduce an off-policy evaluation strategy which provides a 
lower-bound confidence on the expected performance of the AI policy compared to that of the human interview-
ers. Despite the imperfectness of the dialogue simulators, we illustrate a way to empirically assess the margin of 
error between the AI and human policies in a per-turn and per-conversation basis.

There are several limitations to our study. We note that MCI does not necessarily progress to AD or demen-
tia and there are discrepancies between pathological burden and clinical diagnoses. However, this limitation 
is precisely the motivation behind our approach: cognitive prodrome states do not have clean signals that can 
distinguish “normal” from “pathologic” trajectories. Instead, we focus on detecting linguistic markers (text-based 
rather than acoustic, since changes in phoneme frequencies often suggest existing physiologic processes11), as 
the rise of heuristic search – through statistical machine learning or otherwise – can efficiently search through a 
potentially infinite space of dialogue sequences. Unlike classical statistical learning methods, our learning frame-
work utilize a feedback control loop between a RL module and simulation to continuously improve language 
marker identification and enable repeated predictions through interaction with the patient.

Empirically, the most notable limitation is the size of the cohort and the setup of our study did not permit 
us to confirm the cognitive status of participants beyond cross-sectional analyses. We were also unable to con-
firm biomarkers (e.g., amyloid, tau) for our participants. It would be ideal if we could apply our methods to 
differentiate MCIs who were destined to develop dementia from those who remained normal using longitudinal 
follow-up. Groups with access to datasets with high-resolution and longitudinal biomarkers may be motivated to 
apply our proposed framework to (a) augment feature space of their models with our proposed linguistic marker 
acquisition protocol, (c) associate discovered linguistic markers with downstream biomarkers, and (b) test the 
reproducibility of our methods at scale.

In terms of statistical properties, all participants are in the 70+ age group and are from geographically similar 
areas. Although the p-values in Supplemental Table 1 show that such meta-data did not contribute in a statisti-
cally significant manner to MCI prediction, these factors inevitably introduce bias into our simulation models. We 
note that this is also the motivation behind using simulation during evaluation: ideally, we would like to conduct 
large-scale active learning during test time, involving large cohorts of patients. However, this would require the 
deployment of our framework in a real-world setting, a situation that prerequisites extensive efficacy in clinical 
trials. As a result, we present this study as a proof-of-concept to justify clinical trial and patient recruitment which 
would enable more powerful evaluation methods.

Additionally, there are several limitations with the construction and use of dialogue simulators in our exper-
iments. Firstly, we note that punctuations were removed during the process, which lead to biased results during 
the SKP vector encodings, especially for longer sentences. However, since the original Skip-thought encoder was 
trained on the Bookcorpus dataset that featured 13.5 words-per-sentence on average, our performance on simu-
lating short responses were relatively stable. Secondly, we restricted the set of questions on the interviewer side to 
a pool of 107 general questions (see Supplemental Table 2) that were observed across patients. In reality, the set of 
possible actions (i.e., questions) should be much richer than the one used in this preliminary study. One possible 
extension of this work is to investigate the feasibility of our hypothesis under a completely open-dialogue setting, 
whereby the dialogue agent and the user use both use unstructured questions and answers in conversation. Going 
from a pool of 107 questions to open dialogue requires a different question selection mechanism to be used in 
the RL pipeline, and the representation of questions will likely need to be adapted to achieve this. However, we 
expect that one can apply Guided Policy Search (GPS)35 to limit the deviation from the original set of questions.

Another limitation of our dialogue simulation is that it does not fully capture the difference between human-AI 
and human-human conversations in real-world conversation (i.e., the human-in-the-loop problem)36. One way 
we can alleviate this problem is to continuously improve the accuracy of our dialogue simulation. To fully capture 
the difference between human-AI and human-human conversations, a future direction of our study is to apply 
transfer learning to update our simulator models based on dialogue agents trained from other NLP datasets that 
are validated by Wizard-of-Oz evaluation36,37. Wizard-of-Oz evaluation is a technique in NLP research whereby 
the human interacts with a computer and does not know ahead of time whether the AI or another human will 
generate the questions for the proceeding conversation. The success of the dialogue agent in this case is measured 
by the degree to which the human user cannot distinguish between the agent’s questions from those of human 
questioners. Future studies may look to deploy Wizard of Oz evaluation on top of the RL pipeline to quantify the 
difference between human and AI delivery of questions38. Additionally, another promising direction include the 
immersion of our text-based approach with current state-of-the-art audio-based approaches11,12 as well as existing 
biomarkers. This step is beyond the scope of this prototype study, but it can improve the generalizability of our 
dialogue models and provide interpretability of the discovered features.

Finally, interpretability of the linguistic feature vectors (i.e., skip-thought embeddings of sentences) is an open 
problem in NLP. The original LIWC features in Asgari et al.9 provided a means of interpreting the linguistic 
feature vectors due to expert labeling of the latent dimensions (see Pennebaker et al.30 for details). However, the 
latent dimensions of skip-thought vectors are learned in an unsupervised manner (i.e., without expert labels). We 
are currently working to systematically study reliable interpretations of these latent features, but the interpretabil-
ity of deep representations is a subfield of machine learning on its own right and outside the scope of the current 
study, which is to formulate an algorithm to discover questions which can elicit them.

The maturation of AI techniques in neuroscience is a process built in development cycles and clinical phases. 
We here introduce a novel framework for assessing the MCI status of aging populations that extends the appli-
cation of ML methods beyond predictive modeling of disease processes. The proposed AI framework could pro-
vide a potentially cost-effective alternative to in-person interviews and may present a scalable way of screening 
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for aging populations to distinguish normal aging from MCI-risk in an individualized manner. While still in a 
proof-of-concept phase, our results show a scalable and more robust version of our proposed framework pro-
vides an avenue for large-scale preclinical screening of neurocognitive decline through automated digital bio-
marker detection. If such a system is implemented at scale, longitudinal surveillance of dementia status can be 
greatly improved, potentially saving millions in outpatient costs and resource planning for the management of 
Alzheimer’s disease progression. More importantly, dialogue-based algorithms may present a step toward extend-
ing clinical care beyond the classical hospital and clinical settings.

Ethics.  Oregon Health & Science University Institutional Review Board approved the study protocol (proto-
col no. 5590), and all participants provided written informed consent. The project is listed in ClinicalTrials.gov 
(NCT01571427).

Compliance.  All methods were carried out in accordance with relevant guidelines and regulations.
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